Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.
نویسندگان
چکیده
Epilepsy is caused by an electrical hyperexcitability in the CNS. Because K+ channels are critical for establishing and stabilizing the resting potential of neurons, a loss of K+ channels could support neuronal hyperexcitability. Indeed, benign familial neonatal convulsions, an autosomal dominant epilepsy of infancy, is caused by mutations in KCNQ2 or KCNQ3 K+ channel genes. Because these channels contribute to the native muscarinic-sensitive K+ current (M current) that regulates excitability of numerous types of neurons, KCNQ (Kv7) channel activators would be effective in epilepsy treatment. A compound exhibiting anticonvulsant activity in animal seizure models is retigabine. It specifically acts on the neuronally expressed KCNQ2-KCNQ5 (Kv7.2-Kv7.5) channels, whereas KCNQ1 (Kv7.1) is not affected. Using the differential sensitivity of KCNQ3 and KCNQ1 to retigabine, we constructed chimeras to identify minimal segments required for sensitivity to the drug. We identified a single tryptophan residue within the S5 segment of KCNQ3 and also KCNQ2, KCNQ4, and KCNQ5 as crucial for the effect of retigabine. Furthermore, heteromeric KCNQ channels comprising KCNQ2 and KCNQ1 transmembrane domains (attributable to transfer of assembly properties from KCNQ3 to KCNQ1) are retigabine insensitive. Transfer of the tryptophan into the KCNQ1 scaffold resulted in retigabine-sensitive heteromers, suggesting that the tryptophan is necessary in all KCNQ subunits forming a functional tetramer to confer drug sensitivity.
منابع مشابه
Isoform-specific prolongation of Kv7 (KCNQ) potassium channel opening mediated by new molecular determinants for drug-channel interactions.
Kv7 channels, especially Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3), are key determinants for membrane excitability in the brain. Some chemical modulators of KCNQ channels are in development for use as anti-epileptic drugs, such as retigabine (D-23129, N-(2-amino-4-(4-fluorobenzylamino)-phenyl)), which was recently approved for clinical use. In addition, several other compounds were also reported to poten...
متن کاملActivation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats
BACKGROUND Temporomandibular disorders (TMDs) are characterized by persistent orofacial pain and have diverse etiologic factors that are not well understood. It is thought that central sensitization leads to neuronal hyperexcitability and contributes to hyperalgesia and spontaneous pain. Nonsteroidal anti-inflammatory drugs (NSAIDs) are currently the first choice of drug to relieve TMD pain. NS...
متن کاملThe new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate.
Retigabine (RTG) is an anticonvulsant drug with a novel mechanism of action. It activates neuronal KCNQ-type K(+) channels by inducing a large hyperpolarizing shift of steady-state activation. To identify the structural determinants of KCNQ channel activation by RTG, we constructed a set of chimeras using the neuronal K(v)7.2 (KCNQ2) channel, which is activated by RTG, and the cardiac K(v)7.1 (...
متن کاملRefinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K+ channels.
The discovery of retigabine has provided access to alternative anticonvulsant compounds with a novel mode of action. Acting as potassium channel opener, retigabine exclusively activates neuronal KCNQ-type K(+) channels, mainly by shifting the voltage-dependence of channel activation to hyperpolarizing potentials. So far, only parts of the retigabine-binding site have been described, including T...
متن کاملRetigabine: Lesser - Known Effects in Preclinical Studies
Retigabine is a novel anticonvulsant with unique mechanism of action. It induces hyperpolarization of the neuronal membrane by activating a specific type of potassium channels (Kv7, KCNQ). Retigabine is approved by EMA as “adjunctive treatment of partial onset seizures with or without secondary generalisation in adults aged 18 years and above with epilepsy”. The purpose of this review is to res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 20 شماره
صفحات -
تاریخ انتشار 2005